Georgos Vasilakis is joining us as a postdoc on BEC1.

Cretan Matter Waves Group
Georgos Vasilakis is joining us as a postdoc on BEC1.
Rom. Rep. Phys. 67 295 (2015). (link)
V. Bolpasi and W. von Klitzing
Abstract:
The brightest atom lasers to date are formed by time-dependent adiabatic potentials from magnetic Ioffe-Pritchard traps. We analyse these potentials based on a harmonic trap in the presence of gravity. We present a detailed analytic model of the trap and determine the flux of the atom laser, which we find to be in good agreement with recent experimental data. We also present a novel method for determining the Rabi frequency of the dressing rf-field.
Experimental Astronomy 39:2 167-206 (2015) (link) (arXive) Thilo Schuldt et al.Abstract: Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth’s gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto- optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vascuum system for 10-11 mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (819 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown. |
V. Bolpasi, N.K. Efremidis, M.J. Morrissey, P. Condylis, D. Sahagun, M. Baker and W. von Klitzing
New Journal of Physics 16 033036 2014 (link)
The article has selected the article as a New Journal of Physics Highlight of the year 2014.
Phys.org has published a nice semi-popular article about the paper. The New Scientist has also written a rather popularized article about our atom laser.
Note that we have not been given access to any of these articles before publication and are not responsible for its rather imaginative content.
An article in Greek can be found in a number of newspapers, e.g. at Kerdos.gr and in.gr
Article at Kerdos and Article at In.gr
Sigma Live also have made a video interview in Greek about the atom laser.
Physical Review A 89 052127 (2014)
L. Bougas, G. E. Katsoprinakis, W. von Klitzing, and T. Rakitzis
http://dx.doi.org/10.1103/PhysRevA.89.052127 or https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.052127
Abstract: We present the theoretical basis of a cavity-enhanced polarimetric scheme for the measurement of parity-nonconserving (PNC) optical rotation. We discuss the possibility of detecting PNC optical rotation in accessible transitions in metastable Xe and Hg, and ground state I. In particular, the physics of the PNC optical rotation is presented, and we explore the lineshape effects on the expected PNC optical rotation signals. Furthermore, we present an analysis of the eigenpolarizations of the cavity-enhanced polarimeter, which is necessary for understanding the measurement procedure and the ability of employing robust background subtraction procedures using two novel signal reversals. Using recent atomic structure theoretical calculations, we present simulations of the PNC optical rotation signals for all proposed transitions, assuming a range of experimentally feasible parameters. Finally, the possibility of performing sensitive measurements of the nuclear-spin-dependent PNC effects is investigated, for the odd-neutron nuclei 129Xe and 199Hg, and the odd-proton nucleus 127I.
Cavity frequency polarization spectrum. For the simulations we used θF =13 mad and δ = θF/2 = 6.5 mad and for demonstration purposes φPNC = 0.6 mad. (i) The Faraday effect splits the cavity spectrum into R and L modes by 2ωF = 2θF(c/L) (twofold degeneracy); (ii) the PNC optical rotation splits further the clockwise (CW) and counterclockwise (CCW) modes by 2ωPNC = 2φPNC(c/L), while the cavity modes remain circular polarization states; (iii) in the presence of linear birefringence (δ ̸= 0) the frequency splitting of the eigenmodes increases as ωF′ = 1/qωF and the measured PNC- induced splitting is reduced ωF′ = qωF (0 ≤ q ≤ 1) (see Fig. 3); the eigenmodes transform into elliptical states as observed from the different amplitudes of the output light (see the text for discussion). We also assume that the clockwise input beam was p polarized, while the counterclockwise beam was s polarized. The cavity’s linewidth is exaggerated for demonstration purposes; note that the free spectral range of the cavity is ωFSR = 2π × 40 MHz. In (i)–(iii), the gray dashed line corresponds to the fourfold degenerate axial mode of an isotropic cavity. PBS stands for polarizing beam splitter and BS stands for beam splitter.
Classical And Quantum Gravity 31 115010 (2014)
D. N. Aguilera et al.
http://dx.doi.org/10.1088/0264-9381/31/11/115010
Abstract: The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundamental interactions is missing and remains one of the most challenging and important quests in modern theoretical physics. The spacetime explorer and quantum equivalence principle space test satellite mission, proposed as a medium-size mission within the Cosmic Vision program of the European Space Agency (ESA), aims for testing general relativity with high precision in two experiments by performing a measurement of the gravitational redshift of the Sun and the Moon by comparing terrestrial clocks, and by performing a test of the universality of free fall of matter waves in the gravitational field of Earth comparing the trajectory of two Bose–Einstein condensates of 85 Rb and 87 Rb. The two ultracold atom clouds are monitored very precisely thanks to techniques of atom interferometry. This allows to reach down to an uncertainty in the Eötvös parameter of at least 2 à10 âÂÂ15 . In this paper, we report about the results of the phase A mission study of the atom interferometer instrument covering the description of the main payload elements, the atomic source concept, and the systematic error sources
Physical Review A 87 043637 (2013)
N. K. Efremidis, V. Paltoglou, and W. von Klitzing
http://dx.doi.org/10.1103/PhysRevA.87.043637
Abstract: We predict that classes of coherent matter waves can self-accelerate without the presence of an external potential. Such Bose-Einstein condensates can follow arbitrary power-law trajectories and can also take the form of diffraction-free Airy waves. We also show that suitably engineered radially symmetric matter waves can abruptly autofocus in space and time. We suggest different schemes for the preparation of the condensate using laser beams to imprint an amplitude or a phase pattern onto the matter wave. Direct and Fourier space generation of such waves is discussed using continuous and binary masks as well as magnetic mirrors and lenses. We study the effect of interactions and find that independently of the type and strength of the nonlinearity, the dynamics are associated with the generation of accelerating matter waves. In the case of strong attractive interactions, the acceleration is increased while the radiation reorganizes itself in the form of soliton(s).
Optics Communications 290 110-114 (2013)
D. Sahagun, V. Bolpasi, and W. von Klitzing
http://dx.doi.org/10.1016/j.optcom.2012.10.013
The increasing complexity of cold atom experiments puts ever higher demands on the stability and reliability of its components. We present a laser system for atom cooling experiments, which is extremely reliable yet simple to construct and low-cost, thus forming an ideal basis for ultracold atom experiments such as Bose-Einstein condensation and degenerate Fermi gases. The extended cavity (master) diode and slave lasers remain locked over a period of months with a drift in absolute frequency well below 1MHz with a line-width of less than 300kHz. We generate the repumper light by modulating the current of an injection locked slave laser at a frequency of 6.6GHz. The construction of the laser is simple and largely based on off-the-shelf electronic and optomechanical components.
The basic idea of this laser system is to keep the individual elements modular, so that a fault in one part of the system can be repaired by only changing the sub-system with zero changes elsewhere. Each parts in the graph on the right thus represents a separate bread-board.
The article also describes a very simple diode laser with extraordinary long term stability (depicted here on the right). This master-laser uses simply to machine parts and a commercial mirror mount for holding the grating. The diode holder and mirror mount are screwed onto an aluminium base plate, which is glued onto a Peltier element, which in turn is glued onto a base. The whole assembly is then surrounded by thick-walled aluminium box, which has been lined with standard isolation foam.
Another key element are the distribution and AOM breadboards. They consist of standard 40mm kitchen-top granite plates cut to 300x600mm. The optical mounts are 1” aluminium posts which are glued onto the base plate using cyanoacrylate adhesive (Loctite 408). The beam hight is 50mm.
Our article on an adjustable Ioffe Pritchard trap has just been voted to to be one of the most important articles of the year 2012 of the Journal of Physics B.
!
You must be logged in to post a comment.